34 Park Avenue – PO Box 426 LYNDHURST, NEW JERSEY 07071 Tel: 201.939.8805 • Fax: 201.939.0846

200 Central Avenue – Suite 102 **MOUNTAINSIDE, NJ 07092** Tel: 201.939.8805 • Fax: 732.943.7249

ADDENDUM #1 TO DRAINAGE CALCULATIONS FOR BLOCK 416, LOT 3 555 BERGEN BOULEVARD BOROUGH OF PALISADES PARK BERGEN COUNTY, NEW JERSEY

PROJECT NO.: PAPKPRV20.010 ADDENDUM #1 DATE: SEPTEMBER 11, 2020

NEGLIA ENGINEERING ASSOCIATES 34 Park Avenue P.O. Box 426 Lyndhurst, NJ 07071

Anthony Kurus, Professional Engineer New Jersey License No. 46445

Civil Engineering • Municipal Engineering • Landscape Architecture • Traffic Engineering Planning • Land Surveying • GIS • Construction Management

www.negliaengineering.com

Addendum #1 Table of Contents

EXISTING 18" DOWNSTREAM PIPE IN NJ STATE RT 63 CALCULATIONS WATER QUALITY TREATMENT AREA CALCULATIONS NJDEP CERTIFICATION FOR MFD WATER QUALITY PEAK FLOW CALCULATIONS GROUNDWATER ELEVATION DATA

ADDENDUM #1 FIGURE

FIGURE 3 Proposed Sub Area Map (with offsite da to NJDOT inlet)

Proposed Conveyance Pipe Capacity Calculations Manning Equation - full flow Live Work Units Project Borough of Palisades Park

Existing Downstream Pipe in NJ State Route 63 -	Bergen Boulevard	
D	18 in	
А	1.76714587 ft^2	
Р	4.71238898 ft	
R	0.375 ft	
n	0.013 manning's	s roughness coefficient
s	0.025 ft/ft	
Q (capacity)	16.65 cfs	
Pre Development = Post Development Flow to Pipe	1.23 cfs	100 year storm
C	0.95	-
	8.4 in/hr	
A	1.14 ac	Existing Offsite Contributory Flow
Q Existing off-tract	9.10 cfs	100 year storm
total flow to existing downstream pipe in NJ Rt 63	10.33	100 year storm

Conclusion: The existing downstream 18" RCP has sufficient capacity.

		TSS Removal	Treatment Area
WATER QUALITY CALCULATIONS	Area Acres	Requirement	Acres
EXISTING IMPERVIOUS AREA (PRE-DEVELOPED)	0.66	50%	0.33
New Impervious Area	0.03	80%	0.02
total post development impervious	0.69		
Total Treatment Area Required			0.35
			Treatment Area
PROPOSED WATER QUALITY TREATMENT	Area	TSS Removal Rate	Provided
	Acres		Acres
TREAT 100 YR BASIN OUTFLOW (MAX FLOW) WITH CDS	0.69	50%	0.35

CONCLUSION: USE CDS 4 WITH NJDEP CERTIFICATION FOR ON-LINE USE (0.70 TREATMENT FLOW RATE) TO TREAT PEAK FLOW OF NJ WATER QUALITY STORM (WQ-0.52 cfs) AT 50% TSS REMOVAL FOR REDEVELOPMENT SITE

State of New Jersey

DEPARTMENT OF ENVIRONMENTAL PROTECTION Bureau of Nonpoint Pollution Control Division of Water Quality 401-02B Post Office Box 420 Trenton, New Jersey 08625-0420 609-633-7021 Fax: 609-777-0432 http://www.state.nj.us/dep/dwg/bnpc home.htm

CATHERINE R. MCCABE Commissioner

May 18, 2020

Derek M. Berg Director – Stormwater Regulatory Management - East Contech Engineered Solutions LLC 71 US Route 1, Suite F Scarborough, ME 04074

Re: MTD Lab Certification Cascade Separator[™] On-line Installation

TSS Removal Rate 50%

Dear Mr. Berg:

This revised certification letter supersedes the Department's prior certification dated October 1, 2019. This revision was completed to reflect Contech's enhanced fabrication capability to manufacture a smaller-size unit of its the Cascade Separator[™] Manufactured Treatment Device (MTD), while still meeting the scaling methodology as agreed upon by the manufacturers' working group on September 19, 2016. Based on this modification, Table A-1 of the New Jersey Corporation for Advanced Technology (NJCAT) Verification report located at http://www.njcat.org/uploads/newDocs/NJCATTechnologyVerificationFinal.pdf has been revised to reflect this same updated model size and flow rate.

The Stormwater Management rules under N.J.A.C. 7:8-5.5(b) and 5.7(c) allow the use of manufactured treatment devices (MTDs) for compliance with the design and performance standards at N.J.A.C. 7:8-5 if the pollutant removal rates have been verified by the New Jersey Corporation for Advanced Technology (NJCAT) and have been certified by the New Jersey Department of Environmental Protection (NJDEP). Contech Engineered Solutions, LLC (Contech) has requested an MTD Laboratory Certification for the Cascade SeparatorTM stormwater treatment system.

The project falls under the "Procedure for Obtaining Verification of a Stormwater Manufactured Treatment Device from New Jersey Corporation for Advance Technology" dated January 25,

PHILIP D. MURPHY Governor

SHEILA Y. OLIVER Lt. Governor 2013. The applicable protocol is the "New Jersey Laboratory Testing Protocol to Assess Total Suspended Solids Removal by a Hydrodynamic Sedimentation Manufactured Treatment Device" dated January 25, 2013.

NJCAT verification documents submitted to the NJDEP indicate that the requirements of the aforementioned protocol have been met or exceeded. The NJCAT letter also included a recommended certification TSS removal rate and the required maintenance plan. The NJCAT Verification Report with the Verification Appendix (dated September 2019) for this device is published online at http://www.njcat.org/verification-process/technology-verification-process/technology-verification-process/technology-verification-database.html.

The NJDEP certifies the use of the Cascade Separator[™] stormwater treatment system at a TSS removal rate of 50% when designed, operated, and maintained in accordance with the information provided in the Verification Appendix and the following conditions:

- 1. The maximum treatment flow rate (MTFR) for the manufactured treatment device (MTD) is calculated using the New Jersey Water Quality Design Storm (1.25 inches in 2 hrs) in N.J.A.C. 7:8-5.5.
- 2. The Cascade SeparatorTM shall be installed using the same configuration reviewed by NJCAT and shall be sized in accordance with the criteria specified in item 6 below.
- 3. This Cascade Separator[™] cannot be used in series with another MTD or a media filter (such as a sand filter) to achieve an enhanced removal rate for total suspended solids (TSS) removal under N.J.A.C. 7:8-5.5.
- 4. Additional design criteria for MTDs can be found in Chapter 9.6 of the New Jersey Stormwater Best Management Practices (NJ Stormwater BMP) Manual, which can be found online at <u>www.njstormwater.org</u>.
- 5. The maintenance plan for a site using this device shall incorporate, at a minimum, the maintenance requirements for the Cascade SeparatorTM. A copy of the maintenance plan is attached to this certification. However, it is recommended to review the maintenance website at <u>https://www.conteches.com/Portals/0/Documents/Maintenance%20Guides/Cascade-Maintenance%20Guide.pdf?ver=2018-11-05-093254-300</u>. for any changes to the maintenance requirements.
- 6. Sizing Requirement:

The example below demonstrates the sizing procedure for the Cascade SeparatorTM:

Example: A 0.25-acre impervious site is to be treated to 50% TSS removal using a Cascade SeparatorTM. The impervious site runoff (Q) based on the New Jersey Water Quality Design Storm was determined to be 0.79 cfs.

Maximum Treatment Flow Rate (MTFR) Evaluation:

The site runoff (Q) was based on the following:

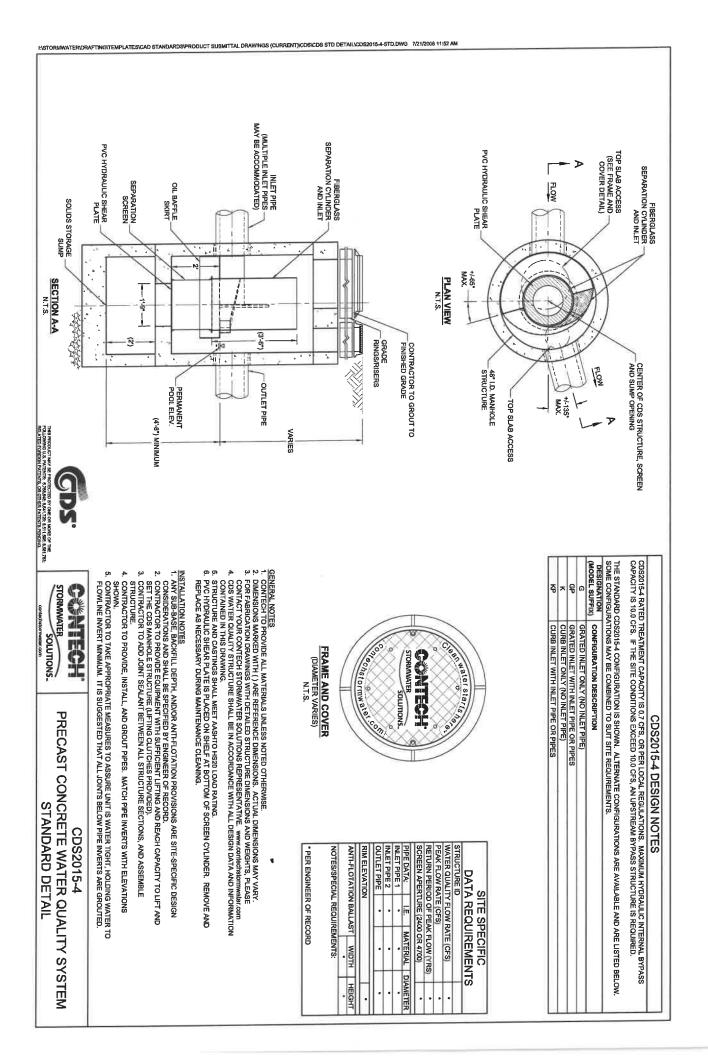
time of concentration = 10 minutes i = 3.2 in/hr (page 5-8, Fig. 5-3 of the NJ Stormwater BMP Manual) c = 0.99 (runoff coefficient for impervious) Q = ciA = 0.99 x 3.2 x 0.25 = 0.79 cfs

Given the site runoff is 0.79 cfs and based on Table A-1 below, the Cascade SeparatorTM Model CS-3 with an MTFR of 1.02 cfs would be the smallest model approved that could be used for this site to remove 50% of the TSS from the impervious area without exceeding the MTFR.

The sizing table corresponding to the available system models is noted below. Additional specifications regarding each model can be found in the Verification Appendix under Table A-1.

Model	Manhole Diameter (ft)	MTFR (cfs)	50% Maximum Sediment Storage Area Volume (ft ³)
CS-3	3	1.02	5.3
CS-4	4	1.80	9.4
CS-5	5	2.81	14.7
CS-6	6	4.05	21.2
CS-8	8	7.20	37.7
CS-10	10	11.3	58.9
CS-12	12	16.2	84.8

Table A-1 Cascade Separator[™] Models and Associated MTFRs

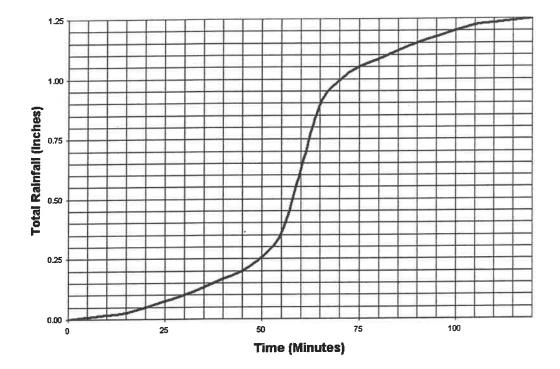

A detailed maintenance plan is mandatory for any project with a stormwater BMP subject to the Stormwater Management rules under N.J.A.C. 7:8. The plan must include all of the items identified in the Maintenance requirements section of the Stormwater Management rules under N.J.A.C. 7:8-5.8. Such items include, but are not limited to, the list of inspection and maintenance equipment and tools, specific corrective and preventative maintenance tasks, indication of problems in the system, and training of maintenance personnel. Additional information can be found in Chapter 8: Maintenance and Retrofit of Stormwater Management Measures.

If you have any questions regarding the above information, please contact Brian Salvo of my office at (609) 633-7021.

Sincerely,

Labriel Mahon

Gabriel Mahon, Chief Bureau of Nonpoint Pollution Control



Time (minutes)	Comulative Rainfall (inches)	Incremental Rainfall (incids)	Time: (minutes)	Cumulative Rainfall (inches)	Aincremental Ratinfal (inches)
0	0.0000	0.0000	65	0.8917	0.2667
5	0.0083	0.0083	70	0.9917	0.1000
10	0.0166	0.0083	75	1.0500	0.0583
15	0.0250	0.0084	80	1.0840	0.0340
20	0.0500	0.0250	85	1.1170	0.0330
25	0.0750	0.0250	90	1.1500	0.0330
30	0.1000	0.0250	95	1.1750	0.0250
35	0.1330	0.0330	100	1.2000	0.0250
40	0.1660	0.0330	105	1.2250	0.0250
45	0.2000	0.0340	110	1.2334	0.0084
50	0.2583	0.0583	115	1.2417	0.0083
55	0.3583	0.1000	120	1.2500	0.0083
60	0.6250	0.2667			

Table 5-1: NJDEP 1.25-Inch/2-Hour Stormwater Quality Design Storm Cumulative and Incremental Rainfall Distributions

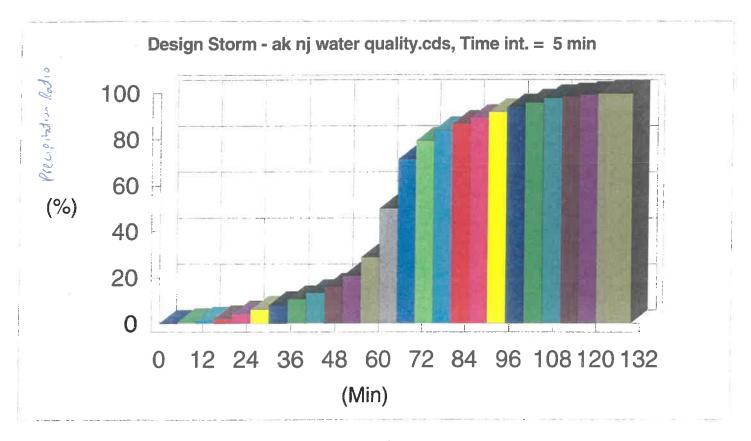
Note: See Figure 5-1 for plot of cumulative rainfall distribution.

New Jersey Stormwater Best Management Practices Manual • Chapter 5: Computing Stormwater Runoff Rates and Volumes • February 2004 • Page 5-7

Figure 5-2: NJDEP 1.25-Inch/2-Hour Stormwater Quality Design Storm

The NJDEP stormwater quality design storm can be used to analyze and design stormwater quality BMPs based on the Rational, Modified Rational, or NRCS methods. Selection of the appropriate method will depend on the type of BMP selected and its required design data. BMPs that essentially store, treat, and slowly release the stormwater quality design storm runoff (such as extended detention basins, wet ponds, constructed stormwater wetlands, and sand filters) generally require a runoff volume at the very least and, ideally, an entire runoff hydrograph. This mandates the use of either the NRCS methodology or Modified Rational Method. However, BMPs that treat the stormwater quality design storm runoff as it is conveyed through them (such a filter strip, buffer or manufactured treatment device) generally require only a peak runoff rate. This can be computed using either the NRCS or Rational Methods. Further information on the use of these methods is presented below. When using either the Rational or Modified Rational Methods, it is important to remember their 20-acre drainage area limitations.

Table 5-1 was prepared for those using the NRCS methodology to compute stormwater quality design storm runoff peaks or hydrographs. It contains cumulative and incremental rainfall values for the stormwater quality design storm in five minute increments. These values can be used in computer programs such as TR-20, HEC-1, HEC-HMS, and other programs that both contain the NRCS methodology and allow user-specified rainfalls.


New Jersey Stormwater Best Management Practices Manual • Chapter 5: Computing Stormwater Runoff Rates and Volumes • February 2004 • Page 5-6

Time	Camulatio Roinfall	e Preciphodio
0	0	0
5	0.0083	0.00664
10	0.0166	0.01328
15	0.025	0.02
20	0.05	0.04
25	0.075	0.06
30	0.1	0.08
35	0.133	0.1064
40	0.166	0.1328
45	0.2	0.16
50	0.2583	0.20664
55	0.3583	0.28664
60	0.625	0.5
65	0.8917	0.71336
70	0.9917	0.79336
75	1.05	0.84
80	1.084	0.8672
85	1.117	0.8936
90	1.15	0.92
95	1.175	0.94
100	1.2	0.96
105	1.225	0.98
110	1.2334	0.98672
115	1.2417	0.99336
120	1.25	1

Piecip Ratio = Cumulative Rainfall Total Rainfall

Note: Cumulative Raintall is as per NJDEP BMP Manual, Chapter 5, table 5-1, "NJDEP 1:25 Inch/2-Itoru Stormwater Quality Design Storm Cumulative and Incremental Kainfall Distribution."

 \mathbf{e}

flecip Ratio = Comulative Rainfall Total Rainfall

Total Rainfall = 1.25 inches

Table of Contents

Hydraflow Hydrographs by Intelisolve

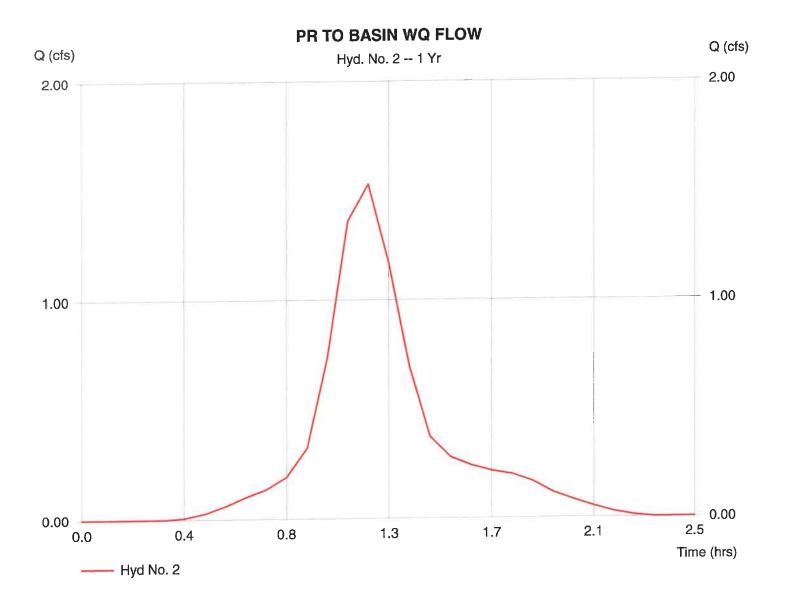
Tuesday, Aug 28 2012, 8:54 AM

1 -	- Year	
	Summary Report	1
	Hydrograph Reports	2
	Hydrograph No. 2, SCS Runoff, PR TO BASIN WQ FLOW	23
	Hydrograph No. 3, Reservoir, BASIN FLOW - WQ Pond Report	4
	Pond Report	

Hydrograph Summary Report

	SCS Runoff Reservoir	1.53 0.52	5	70 85	2,428 2,425				PR TO BASIN WQ FLOW
		0.52	5	85	2,425				1
						2	303.42	1,174	BASIN FLOW - WQ
				1					
VATE									

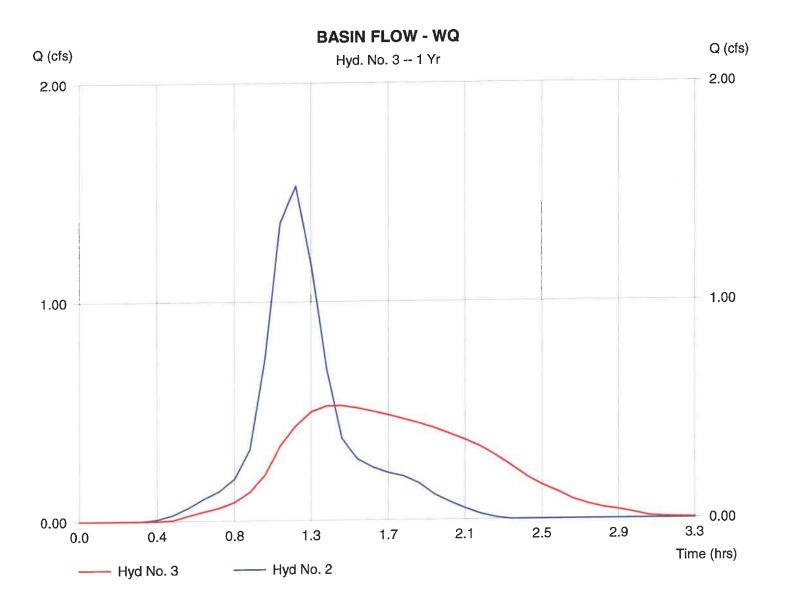
Hydraflow Hydrographs by Intelisolve


Hydraflow Hydrographs by Intelisolve

Hyd. No. 2

PR TO BASIN WQ FLOW

Hydrograph type	 SCS Runoff 1 yrs 0.69 ac 0.0 % USER 1.25 in njdep water quality.cds 	Peak discharge	= 1.53 cfs
Storm frequency		Time interval	= 5 min
Drainage area		Curve number	= 98
Basin Slope		Hydraulic length	= 0 ft
Tc method		Time of conc. (Tc)	= 10 min
Total precip.		Distribution	= Custom
Storm duration		Shape factor	= 484


Hydrograph Volume = 2,428 cuft

Tuesday, Aug 28 2012, 8:54 AM

Hydrograph Plot

Hydraflow Hydrographs by	Intelisolve	Tue	Tuesday, Aug 28 2012, 8:54 AM		
Hyd. No. 3 BASIN FLOW - W	/Q				
Hydrograph type Storm frequency Inflow hyd. No. Reservoir name	 Reservoir 1 yrs 2 PIPE STORAGE - OAKDENE 	Peak discharge Time interval Max. Elevation Max. Storage	= 0.52 cfs = 5 min = 303.42 ft = 1,174 cuft		
Storage Indication method	used.	Hyd	rograph Volume = 2,425 cuft		

Pond Report

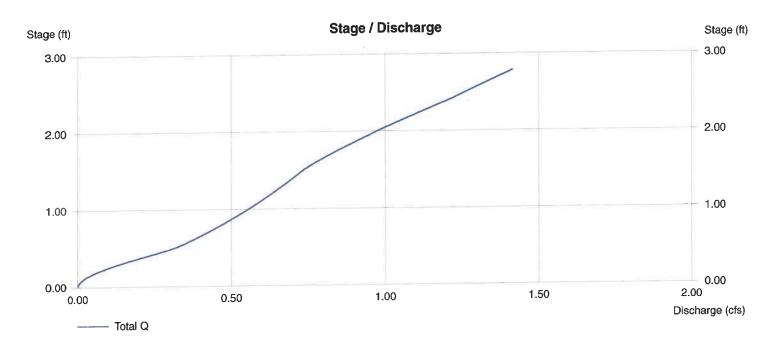
Hydraflow Hydrographs by Intelisolve

Pond No. 6 - PIPE STORAGE - OAKDENE

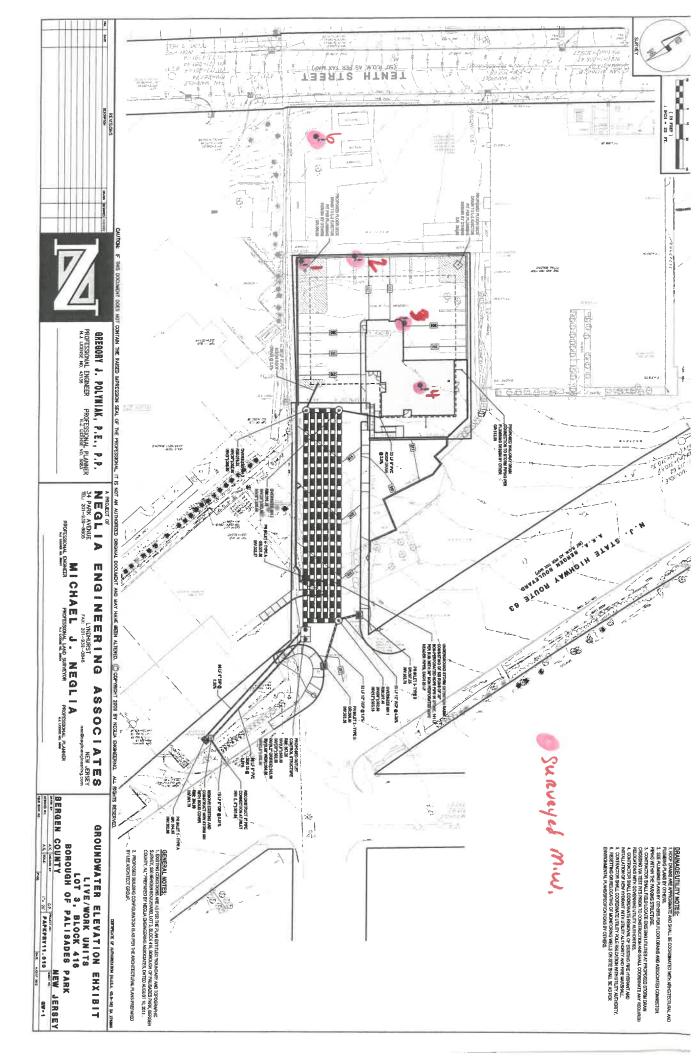
Pond Data

Pipe dia. = 2.50 ft Pipe length = 141.0 ft No. Barrels = 6.0 Slope = 0.20 % Invert elev. = 302.50 ft

Stage / Storage Table


Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	302.50	00	0	0
0.00	302.64	00	17	17
0.28	302.78	00	91	108
0.20	302.92	00	163	271
0.42	303.06	00	211	482
0.50	303.20	00	243	725
0.83	303.33	00	266	991
0.83	303.47	00	283	1,274
1.11	303.61	00	296	1,570
	303.75	00	304	1,874
1.25	303.89	00	308	2,182
1.39	304.03	00	308	2,489
1.53	304.00	00	304	2,793
1.67	304.31	00	296	3,089
1.81	304.45	00	284	3,373
1.95	304.59	00	266	3,638
2.09	304.73	00	243	3,881
2.23	304.86	00	210	4,091
2.36	305.00	00	163	4,254
2.50	305.14	00	90	4,345
2.64 2.78	305.28	00	17	4,362

Weir Structures


Culvert / Orifice Structures

	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise (in) Span (in) No. Barrels Invert El. (ft) Length (ft) Slope (%) N-Value Orif. Coeff. Multi-Stage	= 8.00 = 8.00 = 1 = 302.50 = 100.00 = 0.81 = .011 = 0.60 = n/a	6.20 6.20 1 302.50 0.00 0.00 .013 0.44 Yes	0.00 0.00 0.00 0.00 0.00 .000 0.00 No	0.00 0.00 0.00 0.00 0.00 0.00 0.00 No	Crest Len (ft) Crest El. (ft) Weir Coeff. Weir Type Multi-Stage Exfiltration = 0	= 0.10 = 304.00 = 3.33 = Rect = Yes	0.00 0.00 3.33 No	0.00 0.00 0.00 No	0.00 0.00 No v. = 0.00 ft

Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.

Tuesday, Aug 28 2012, 8:54 AM

G:\PROJECTS\2003\03-10-05 Rich Intl\LSRP 550 Bergen Blvd\GWElevation 2011.xls

bgs - Below Ground Surface TIC - Top of Inner Casing DTW - Depth to Water NI - Not installed

WP-1	TWP-3	TWP-2	TWP-1	Well ID
r	9.65	11.27	11.58	DTW (ft)
12	1	ł	1	June 16, 2011 DTW (ft)

Former Raimondo Property 550 Bergen Boulevard

Ground Water Elevation Data

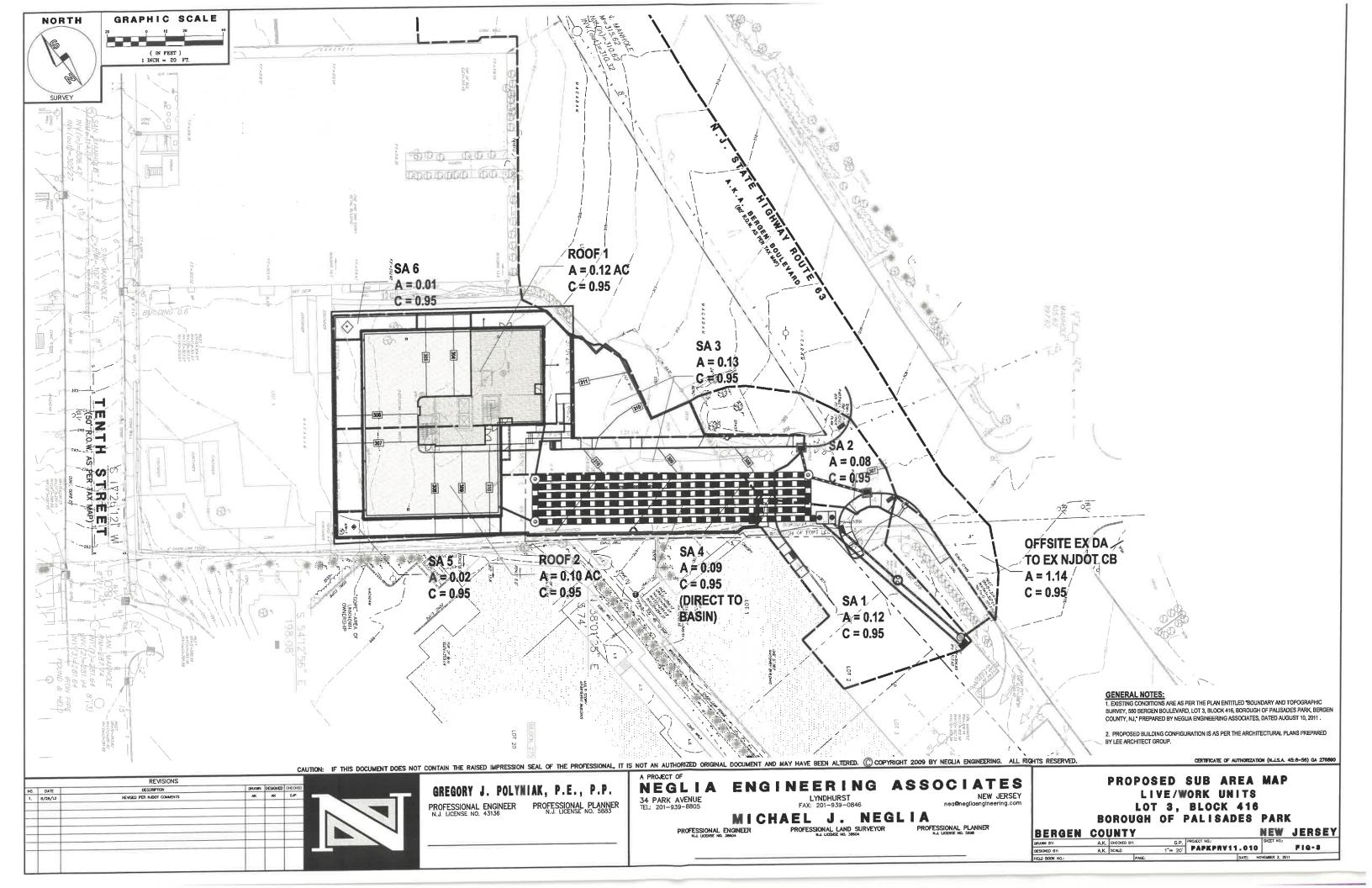
Palisades Park, New Jersey

TABLE 2

	The state of the s		ないない	March	March 11, 2005	June	June 14, 2005	March	March 28, 2007	June	June 5, 2007	Decembo	December 22, 2008	June 1	June 16, 2011
	Total Depth		Screened Inteval				「「「								
Well ID	(feet bgs)	TIC Elevation	(feet bgs)	DTW	Elevation	DTW	Elevation	DTW	Elevation	DTW	Elevation	DTW	Elevation	DTW	Elevation
MW-1	17	300.19	7 to 17	10.56	289.63	11.80	288.39		1		290.44	080			280 44
MW-2	17	300.45	7 to 17	9.79	290.66	11.26	61 682	•	•	- 1			_	.0.10	11.107
1111 -															
MW-3	15	303.07	5 to 15	9.06	294.01	11.67	291.40	8.35	294.72	8.95	294.12	•		•	•
MW-4	14	303.08	4 to 14	4.77	298.31	5.61	297.47	4.46	298.62	4.65	298.43		•	•	
MW-5	15	301.42	5 to 15	N	NI	8.70	292.72			•		•			
MW-6	17	298,3	7 to 17	NI	NI	Dry		1		15.70	282.60	•	•	•	

1 inch equals 40 feet

Monitoring Well Locations Proposed Temporary Wells Approximate Property Line


¢

Monitoring Well Locations

FORMER RAIMONDO PROPERTY

